Wednesday, October 01, 2008


Micro-Electro-Mechanical Systems (MEMS) is the integration of mechanical elements, sensors, actuators, and electronics on a common silicon substrate through microfabrication technology. While the electronics are fabricated using integrated circuit (IC) process sequences (e.g., CMOS, Bipolar, or BICMOS processes), the micromechanical components are fabricated using compatible "micromachining" processes that selectively etch away parts of the silicon wafer or add new structural layers to form the mechanical and electromechanical devices.

MEMS promises to revolutionize nearly every product category by bringing together silicon-based microelectronics with micromachining technology, making possible the realization of complete systems-on-a-chip. MEMS is an enabling technology allowing the development of smart products, augmenting the computational ability of microelectronics with the perception and control capabilities of microsensors and microactuators and expanding the space of possible designs and applications.

Microelectronic integrated circuits can be thought of as the "brains" of a system and MEMS augments this decision-making capability with "eyes" and "arms", to allow microsystems to sense and control the environment. Sensors gather information from the environment through measuring mechanical, thermal, biological, chemical, optical, and magnetic phenomena. The electronics then process the information derived from the sensors and through some decision making capability direct the actuators to respond by moving, positioning, regulating, pumping, and filtering, thereby controlling the environment for some desired outcome or purpose. Because MEMS devices are manufactured using batch fabrication techniques similar to those used for integrated circuits, unprecedented levels of functionality, reliability, and sophistication can be placed on a small silicon chip at a relatively low cost
MEMS and Nano devices are extremely small -- for example, MEMS and Nanotechnology has made possible electrically-driven motors smaller than the diameter of a human hair (right) -- but MEMS and Nanotechnology is not primarily about size.
MEMS and Nanotechnology is also not about making things out of silicon, even though silicon possesses excellent materials properties, which make it an attractive choice for many high-performance mechanical applications; for example, the strength-to-weight ratio for silicon is higher than many other engineering materials which allows very high-bandwidth mechanical devices to be realized.

Instead, the deep insight of MEMS and Nano is as a new manufacturing technology, a way of making complex electromechanical systems using batch fabrication techniques similar to those used for integrated circuits, and uniting these electromechanical elements together with electronics

First, MEMS and Nanotechnology are extremely diverse technologies that could significantly affect every category of commercial and military product. MEMS and Nanotechnology are already used for tasks ranging from in-dwelling blood pressure monitoring to active suspension systems for automobiles.

Second, MEMS and Nanotechnology blurs the distinction between complex mechanical systems and integrated circuit electronics. Historically, sensors and actuators are the most costly and unreliable part of a macroscale sensor-actuator-electronics system. MEMS and Nanotechnology allows these complex electromechanical systems to be manufactured using batch fabrication techniques, decreasing the cost and increasing the reliability of the sensors and actuators to equal those of integrated circuits.

Please give your suggestion and follow us if you are interested, which encourage us to create new topics for you. And Thankyou for your support.